Bayesian Shrinkage Methods for Partially Observed Data with Many Predictors.
نویسندگان
چکیده
Motivated by the increasing use of and rapid changes in array technologies, we consider the prediction problem of fitting a linear regression relating a continuous outcome Y to a large number of covariates X , eg measurements from current, state-of-the-art technology. For most of the samples, only the outcome Y and surrogate covariates, W , are available. These surrogates may be data from prior studies using older technologies. Owing to the dimension of the problem and the large fraction of missing information, a critical issue is appropriate shrinkage of model parameters for an optimal bias-variance tradeoff. We discuss a variety of fully Bayesian and Empirical Bayes algorithms which account for uncertainty in the missing data and adaptively shrink parameter estimates for superior prediction. These methods are evaluated via a comprehensive simulation study. In addition, we apply our methods to a lung cancer dataset, predicting survival time (Y) using qRT-PCR ( X ) and microarray ( W ) measurements.
منابع مشابه
Hierarchical Shrinkage Priors for Dynamic Regressions With Many Predictors
This paper builds on a simple unified representation of shrinkage Bayes estimators based on hierarchical Normal-Gamma priors. Various popular penalized least squares estimators for shrinkage and selection in regression models can be recovered using this single hierarchical Bayes formulation. Using 129 U.S. macroeconomic quarterly variables for the period 1959 – 2010 I exhaustively evaluate the ...
متن کاملHierarchical Shrinkage in Time-Varying Parameter Models
In this paper, we forecast EU-area inflation with many predictors using time-varying parameter models. The facts that time-varying parameter models are parameter-rich and the time span of our data is relatively short motivate a desire for shrinkage. In constant coefficient regression models, the Bayesian Lasso is gaining increasing popularity as an effective tool for achieving such shrinkage. I...
متن کاملClassic and Bayes Shrinkage Estimation in Rayleigh Distribution Using a Point Guess Based on Censored Data
Introduction In classical methods of statistics, the parameter of interest is estimated based on a random sample using natural estimators such as maximum likelihood or unbiased estimators (sample information). In practice, the researcher has a prior information about the parameter in the form of a point guess value. Information in the guess value is called as nonsample information. Thomp...
متن کاملGeneralized Shrinkage Methods for Forecasting Using Many Predictors
This article provides a simple shrinkage representation that describes the operational characteristics of various forecasting methods designed for a large number of orthogonal predictors (such as principal components). These methods include pretest methods, Bayesian model averaging, empirical Bayes, and bagging. We compare empirically forecasts from these methods with dynamic factor model (DFM)...
متن کاملE-Bayesian Approach in A Shrinkage Estimation of Parameter of Inverse Rayleigh Distribution under General Entropy Loss Function
Whenever approximate and initial information about the unknown parameter of a distribution is available, the shrinkage estimation method can be used to estimate it. In this paper, first the $ E $-Bayesian estimation of the parameter of inverse Rayleigh distribution under the general entropy loss function is obtained. Then, the shrinkage estimate of the inverse Rayleigh distribution parameter i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The annals of applied statistics
دوره 7 4 شماره
صفحات -
تاریخ انتشار 2013